Loop Quantum Gravity

Thomas Thiemann

1 Inst. f. Quantengravitation (IQG), FAU Erlangen – Nürnberg

GR20, Warszawa, July 2013
Contents

- The Challenge of Quantum Gravity
- Elements of Loop Quantum Gravity (LQG)
- Research Directions of LQG
Contents

- The Challenge of Quantum Gravity
- Elements of Loop Quantum Gravity (LQG)
- Research Directions of LQG
Contents

- The Challenge of Quantum Gravity
- Elements of Loop Quantum Gravity (LQG)
- Research Directions of LQG
It is widely believed that only a full fledged quantum theory of gravity can answer fundamental questions such as:

- Which new physics takes over near singularities (black holes, big bang)?
- What is the origin of dark energy?
- How does the UV completion of effective theories (e.g. perturbative QG) look like?

For more than 70 years physicists are looking for a unified theory of general relativity and quantum mechanics – so far w/o success.

Why?
It is widely believed that only a full fledged quantum theory of gravity can answer fundamental questions such as:

- Which new physics takes over near singularities (black holes, big bang)?
- What is the origin of dark energy?
- How does the UV completion of effective theories (e.g. perturbative QG) look like?

For more than 70 years physicists are looking for a unified theory of general relativity and quantum mechanics – so far w/o success.

Why?
It is widely believed that only a full fledged quantum theory of gravity can answer fundamental questions such as:

- Which new physics takes over near singularities (black holes, big bang)?
- What is the origin of dark energy?
- How does the UV completion of effective theories (e.g. perturbative QG) look like?

For more than 70 years physicists are looking for a unified theory of general relativity and quantum mechanics – so far w/o success.

Why?
It is widely believed that only a full fledged quantum theory of gravity can answer fundamental questions such as:

- Which new physics takes over near singularities (black holes, big bang)?
- What is the origin of dark energy?
- How does the UV completion of effective theories (e.g. perturbative QG) look like?

For more than 70 years physicists are looking for a unified theory of general relativity and quantum mechanics – so far w/o success.

Why?
It is widely believed that only a full fledged quantum theory of gravity can answer fundamental questions such as:

- Which new physics takes over near singularities (black holes, big bang)?
- What is the origin of dark energy?
- How does the UV completion of effective theories (e.g. perturbative QG) look like?

For more than 70 years physicists are looking for a unified theory of general relativity and quantum mechanics – so far w/o success.

Why?
Gravity = Geometry, Curvature = Matter Energy Density

Einstein’s equations

\[R_{\mu\nu}[g] - \frac{1}{2} R[g] \, g_{\mu\nu} = 8\pi G \, T_{\mu\nu}[g] \]

Background independence: Geometry g not prescribed but dynamically determined by matter energy density T.
Gravity = Geometry, Curvature = Matter Energy Density

Einstein’s equations

\[R_{\mu\nu}[g] - \frac{1}{2} R[g] g_{\mu\nu} = 8\pi G T_{\mu\nu}[g] \]

Background independence: Geometry \(g \) not prescribed but dynamically determined by matter energy density \(T \).
Gravity = Geometry, Curvature = Matter Energy Density

Einstein’s equations

\[R_{\mu\nu}[g] - \frac{1}{2} R[g] g_{\mu\nu} = 8\pi G T_{\mu\nu}[g] \]

Background independence: Geometry g not prescribed but dynamically determined by matter energy density T.
Background independence and backreaction (gravitational waves)
QFT on CST rigorously developed [Wald 90’s, Hollands & Wald 00’s, Fredenhagen, Brunetti, Verch 00’s]

Extremely good approx. when backreaction effects negligible
QFT on CST rigorously developed [Wald 90’s, Hollands & Wald 00’s, Fredenhagen, Brunetti, Verch 00’s]

Extremely good approx. when backreaction effects negligible
QFT on CST rigorously developed [Wald 90’s, Hollands & Wald 00’s, Fredenhagen, Brunetti, Verch 00’s]

Extremely good approx. when backreaction effects negligible

But: fundamentally background dep. Haag – Kastler formulation:
If $\mathcal{O}, \mathcal{O}'$ spacelike separated wrt g_0 then $[\mathcal{A}(\mathcal{O}), \mathcal{A}(\mathcal{O}')] = 0$
Ordinary QFT: photons propagate on rigid spacetime
BI QFT: Fuzzy (fluctuating) lightcone
The structure crucial for ordinary QFT

\[g_0 \Rightarrow (x - y)^2 < 0 \Rightarrow A \]
Background Light Cone Algebra

collapses when \(g_0 \) not available.

ignores gravitational backreaction.

invalid approx. in extreme cosm. & astrophys. situat.

Perturbative approach

\[g = g_0 + h \]
Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non-renormalisability, merely effect. graviton QFT over \(g_0 \).
The structure crucial for ordinary QFT

\[g_0 \Rightarrow (x - y)^2 < 0 \Rightarrow \mathcal{A} \]

Background\hspace{1cm} Light Cone\hspace{1cm} Algebra

collapses when \(g_0 \) not available.

ignores gravitational backreaction.
invalid approx. in extreme cosm. & astrophys. situat.
Perturbative approach

\[g = g_0 + h \]

Total Metric\hspace{1cm} Background\hspace{1cm} Perturbation (Graviton)

violates BI, inacceptable due to non-renormalisability, merely effect. graviton QFT over \(g_0 \).
The structure crucial for ordinary QFT

\[g_0 \Rightarrow (x - y)^2 < 0 \Rightarrow A \]
Background Light Cone Algebra

- collapses when \(g_0 \) not available.
- ignores gravitational backreaction.
- invalid approx. in extreme cosm. & astrophys. situat.

Perturbative approach

\[g = g_0 + h \]
Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non–renormalisability, merely effect. graviton QFT over \(g_0 \).
The structure crucial for ordinary QFT

\[g_0 \Rightarrow (x - y)^2 < 0 \Rightarrow A \]

Background Light Cone Algebra

collapses when \(g_0 \) not available.

ignores gravitational backreaction.

invalid approx. in extreme cosm. & astrophys. situat.

Perturbative approach

\[g = g_0 + h \]

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non-renormalisability, merely effect. graviton QFT over \(g_0 \).
The structure crucial for ordinary QFT

\[g_0 \Rightarrow (x - y)^2 < 0 \Rightarrow A \]

Background Light Cone Algebra

collapses when \(g_0 \) not available.

ignores gravitational backreaction.

invalid approx. in extreme cosm. & astrophys. situat.

Perturbative approach

\[g \uparrow \uparrow \uparrow \text{Total Metric} \quad g_0 \uparrow \uparrow \uparrow \text{Background Perturbation (Graviton)} \]

violates BI, inacceptable due to non-renormalisability, merely effect. graviton QFT over \(g_0 \).
We need the

\[\hat{R}_{\mu\nu} - \frac{1}{2} \hat{R} \hat{g}_{\mu\nu} = 8\pi G \hat{T}_{\mu\nu}(\hat{g}) \]

Quantum - Einstein - Equations

- Relaxation of principles of QFT on CST.
- QFT on diff. mfd. M rather than QFT on spacetime \((M, g_0)\).
- Theory that works even if notion of classical (smooth) metric breaks down
- but contains QFT on CST for all backgrounds.
We need the

\[
\hat{R}_{\mu \nu} - \frac{1}{2} \hat{R} \hat{g}_{\mu \nu} = 8\pi G \hat{T}_{\mu \nu}(\hat{g})
\]

Quantum - Einstein - Equations

- Relaxation of principles of QFT on CST.
- QFT on diff. mfd. \(M \) rather than QFT on spacetime \((M, g_0)\).
- Theory that works even if notion of classical (smooth) metric breaks down
- but contains QFT on CST for all backgrounds.
We need the

\[\hat{R}_{\mu\nu} - \frac{1}{2} \hat{R} \hat{g}_{\mu\nu} = 8\pi G \hat{T}_{\mu\nu}(\hat{g}) \]

Quantum - Einstein - Equations

- Relaxation of principles of QFT on CST.
- QFT on diff. mfd. M rather than QFT on spacetime \((M, g_0)\).
- Theory that works even if notion of classical (smooth) metric breaks down
- but contains QFT on CST for all backgrounds.
We need the

\[\hat{R}_{\mu\nu} - \frac{1}{2} \hat{R} \hat{g}_{\mu\nu} = 8\pi G \hat{T}_{\mu\nu}(\hat{g}) \]

Quantum - Einstein - Equations

- Relaxation of principles of QFT on CST.
- QFT on diff. mfd. M rather than QFT on spacetime \((M, g_0)\).
- Theory that works even if notion of classical (smooth) metric breaks down

but contains QFT on CST for all backgrounds.
We need the

\[
\hat{R}_{\mu\nu} - \frac{1}{2} \hat{R} \hat{g}_{\mu\nu} = 8\pi G \hat{T}_{\mu\nu}(\hat{g})
\]

Quantum - Einstein - Equations

- Relaxation of principles of QFT on CST.
- QFT on diff. mfd. M rather than QFT on spacetime \((M, g_0)\).
- Theory that works even if notion of classical (smooth) metric breaks down
- but contains QFT on CST for all backgrounds.
The Challenge of Quantum Gravity
Elements of Loop Quantum Gravity (LQG)
Research Directions

Principle of Background Independence
Disclaimer

LQG is/does not

- a unified theory of all interactions.
- predict the matter content and dimension of the world.

Instead, LQG is/ tries

- a particular incarnation of the canonical approach to QFT including GR.
- to consistently combine the salient principles of QFT and GR.
LQG is/does not

- a unified theory of all interactions.
- predict the matter content and dimension of the world.

Instead, LQG is/ tries

- a particular incarnation of the canonical approach to QFT including GR.
- to consistently combine the salient principles of QFT and GR.
LQG is/does not

- a unified theory of all interactions.
- predict the matter content and dimension of the world.

Instead, LQG is/ tries

- a particular incarnation of the canonical approach to QFT including GR.
- to consistently combine the salient principles of QFT and GR.
LQG is/does not

- a unified theory of all interactions.
- predict the matter content and dimension of the world.

Instead, LQG is/ tries

- a particular incarnation of the canonical approach to QFT including GR.
- to consistently combine the salient principles of QFT and GR.
Canonical Formulation: $M \cong \mathbb{R} \times \sigma$ globally hyperbolic
Due to spinorial matter, forced to use connections.

- Canonical variables: \((A^j_a, E^a_j) \) [Ashtekar, Barbero, Immirzi, Sen 80's]
- Poisson brackets: \(\{A^j_a(x), E^b_k(y)\} = G \delta^b_a \delta^j_k \delta(x, y) \)
- Constraint = Gauss Law: \(C_j = D_a E^a_j = 0 \)
- Phase space of YM sector of weak interaction!
- However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int_\sigma d^3 x \left\{ \frac{L \text{Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{Tr}(SE^b)}{|\det(E)|^{1/2}} \right. \\
\left. + L \wedge |\det(E)|^{1/2} + \text{more} \right\} + \text{matter terms}
\]

- EOM+Gaus Constraint+\(H_{\text{can}}[L, S] = 0 \ \forall \ L, S \leftrightarrow \text{Einstein-Equations} \)
Due to spinorial matter, forced to use connections.

 Canonical variables: (A^i_a, E^a_j) [Ashtekar, Barbero, Immirzi, Sen 80's]

 Poisson brackets: $\{A^i_a(x), E^b_j(y)\} = G \delta^b_a \delta^i_j \delta(x, y)$

 Constraint = Gauss Law: $C_j = D_a E^a_j = 0$

 Phase space of YM sector of weak interaction!

 However, different “dynamics”:

 $H_{\text{can}}[L, S] = \int d^3 x \left\{ \frac{L \text{Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{Tr}(SE^b)}{|\det(E)|^{1/2}} + L \wedge |\det(E)|^{1/2} + \text{more} \right\} + \text{matter terms}$

 EOM+Gaus Constraint+$H_{\text{can}}[L, S] = 0 \ \forall \ L, S \Leftrightarrow \text{Einstein-Equations}$
Due to spinorial matter, forced to use connections.

Canonical! variables: \((A^i_a, E^a_j)\) [Ashtekar, Barbero, Immirzi, Sen 80's]

Poisson brackets: \(\{A^i_a(x), E^j_b(y)\} = G \delta^b_a \delta^j_i \delta(x, y)\)

Constraint = Gauss Law: \(C_j = D_a E^a_j = 0\)

Phase space of YM sector of weak interaction!

However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int d^3x \left\{ \frac{L \text{Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{Tr}(SE^b)}{|\det(E)|^{1/2}} + L \wedge |\det(E)|^{1/2} + \text{more} \right\} + \text{matter terms}
\]

EOM+Gaus Constraint+\(H_{\text{can}}[L, S] = 0\) \(\forall\) L, S \(\Leftrightarrow\) Einstein-Equations
Due to spinorial matter, forced to use connections.

Canonical! variables: \((A^i_a, E^a_j)\) [Ashtekar, Barbero, Immirzi, Sen 80's]

Poisson brackets: \(\{A^i_a(x), E^b_j(y)\} = G \delta^b_a \delta^i_j \delta(x, y)\)

Constraint = Gauss Law: \(C_j = D_a E^a_j = 0\)

Phase space of YM sector of weak interaction!

However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int_{\sigma} d^3x \left\{ \left[\frac{L \text{Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{Tr}(S E^b)}{|\det(E)|^{1/2}} \right] + L \wedge |\det(E)|^{1/2} + \text{more} \right\} + \text{matter terms}
\]

\[
EOM + \text{Gaus Constraint} + H_{\text{can}}[L, S] = 0 \quad \forall \ L, S \leftrightarrow \text{Einstein-Equations}
\]
Due to spinorial matter, forced to use connections.

Canonical! variables: \((A^a_j, E^a_j)\) [Ashtekar, Barbero, Immirzi, Sen 80's]

Poisson brackets: \(\{A^a_j(x), E^b_k(y)\} = G \delta^b_a \delta^j_k \delta(x, y)\)

Constraint = Gauss Law: \(C_j = \mathcal{D}_a E^a_j = 0\)

Phase space of YM sector of weak interaction!

However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int d^3 x \left\{ \frac{L \text{Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{Tr}(S E^b)}{|\det(E)|^{1/2}} + L \land |\det(E)|^{1/2} + \text{more} \right\} + \text{matter terms}
\]

EOM+Gaus Constraint+\(H_{\text{can}}[L, S] = 0\) \(\forall\ L, S \leftrightarrow \text{Einstein-Equations}\)
Due to spinorial matter, forced to use connections.

- Canonical variables: \((A^i_a, E^a_j)\) [Ashtekar, Barbero, Immirzi, Sen 80's]
- Poisson brackets: \(\{A^i_a(x), E^b_j(y)\} = G \delta^b_a \delta^i_j \delta(x, y)\)
- Constraint = Gauss Law: \(C_j = D_a E^a_j = 0\)
- Phase space of YM sector of weak interaction!
- However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int_{\sigma} d^3 x \ [L \text{ Tr}(F_{ab} E^a E^b) + \text{Tr}(F_{ab} E^a) \text{ Tr}(SE^b) \over |\text{det}(E)|^{1/2}]
+ L \wedge |\text{det}(E)|^{1/2} + \text{more} + \text{matter terms} \]

- EOM+Gaus Constraint+\(H_{\text{can}}[L, S] = 0\) \(\forall\ L, S \leftrightarrow\) Einstein-Equations
Due to spinorial matter, forced to use connections.

Canonical! variables: \((A^i_a, E^a_j)\) [Ashtekar, Barbero, Immirzi, Sen 80's]

Poisson brackets: \(\{A^i_a(x), E^b_j(y)\} = G \delta^b_a \delta^j_i \delta(x, y)\)

Constraint = Gauss Law: \(C_j = D_a E^a_j = 0\)

Phase space of YM sector of weak interaction!

However, different “dynamics”:

\[
H_{\text{can}}[L, S] = \int_{\sigma} d^3x \ \{[L \ Tr(F_{ab} E^a E^b) + Tr(F_{ab} E^a) Tr(SE^b)] \ / |\det(E)|^{1/2} \\
+ L \wedge |\det(E)|^{1/2} + \text{more} \} + \text{matter terms}
\]

\(EOM+\text{Gaus Constraint}+H_{\text{can}}[L, S] = 0 \ \forall \ L, S \leftrightarrow \text{Einstein-Equations}\)
Task:

- **Step 1**: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- **Step 2**: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- **Step 3**: Equip solution space with physical inner product

Even step 1 is a **nightmare**: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D

Works **universally** for all terms and matter couplings!

Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product

Even step 1 is a nightmare: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

Cosmological term \Rightarrow E must be smeared in precisely 2D

Einstein term \Rightarrow A must be smeared in precisely 1D

Works universally for all terms and matter couplings!

Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product

Even step 1 is a nightmare: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D

Works universally for all terms and matter couplings!

Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\psi = 0$
- Step 3: Equip solution space with physical inner product

Even step 1 is a nightmare: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D

Works universally for all terms and matter couplings!

Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product

Even step 1 is a nightmare: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D

Works universally for all terms and matter couplings!
Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\psi = 0$
- Step 3: Equip solution space with physical inner product
- Even step 1 is a nightmare: how to tame the monster?
- Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.
- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D
- Works universally for all terms and matter couplings!
- Reason: diffeomorphism invariance
- Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product

Even step 1 is a nightmare: how to tame the monster?

Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.

- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D

Works universally for all terms and matter couplings!
Reason: diffeomorphism invariance

Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product
- Even step 1 is a nightmare: how to tame the monster?
- Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.
- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D
- Works universally for all terms and matter couplings!
 Reason: diffeomorphism invariance
- Dynamics forces us to consider the Holonomy-Flux Algebra
Task:

- Step 1: Find repr. of CCR s.t. “Hamiltonian” becomes d.d. op.
- Step 2: Solve quantum constraints $H_{\text{can}}(L, S)\Psi = 0$
- Step 3: Equip solution space with physical inner product
- Even step 1 is a nightmare: how to tame the monster?
- Idea: regulate by smearing the fields “economically” s.t. well defined op. remains when removing regulator.
- Cosmological term \Rightarrow E must be smeared in precisely 2D
- Einstein term \Rightarrow A must be smeared in precisely 1D
- Works universally for all terms and matter couplings!
- Reason: diffeomorphism invariance
- Dynamics forces us to consider the Holonomy-Flux Algebra
Holonomy-Flux algebra [Rovelli& Smolin, Gambini & Pullin 80’s]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)

\[
A(e) = \mathcal{P} \exp\left(\int_e A\right)
\]

- Electr. dof: flux

\[
E_f(S) = \int_S \epsilon_{abc} \langle E^a, f \rangle \, dx^b \wedge dx^c
\]

- Poisson – brackets:

\[
\{E_f(S), A(e)\} = G A(e_1) f(S \cap e) A(e_2); \quad e = e_1 \circ e_2, \quad e_1 \cap e_2 = e \cap S
\]
Holonomy-Flux algebra [Rovelli & Smolin, Gambini & Pullin 80’s]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)

\[A(e) = \mathcal{P} \exp(\int e \, A) \]

- Electr. dof: flux

\[E_f(S) = \int_S \epsilon_{abc} < E^a, f > \, dx^b \wedge dx^c \]

- Poisson – brackets:

\[\{ E_f(S), A(e) \} = G A(e_1) f(S \cap e) A(e_2); \quad e = e_1 \circ e_2, \quad e_1 \cap e_2 = e \cap S \]
Holonomy-Flux algebra [Rovelli& Smolin, Gambini & Pullin 80's]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)

\[A(e) = \mathcal{P} \exp(\int_e A) \]

- Electr. dof: flux

\[E_f(S) = \int_S \epsilon_{abc} < E^a, f > \ dx^b \wedge dx^c \]

- Poisson – brackets:

\[\{ E_f(S), A(e) \} = G A(e_1) f(S \cap e) A(e_2); \ e = e_1 \circ e_2, \ e_1 \cap e_2 = e \cap S \]
The Challenge of Quantum Gravity
Elements of Loop Quantum Gravity (LQG)
Research Directions

Disclaimer
Classical Formulation
Quantum Theory

Loop Quantum Gravity (LQG)
Holonomy-Flux algebra [Rovelli & Smolin, Gambini & Pullin 80’s]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)
 \[A(e) = \mathcal{P} \exp(\int_\mathcal{E} A) \]

- Electr. dof: flux
 \[E_f(S) = \int_S \epsilon_{abc} \langle E^a, f \rangle dx^b \wedge dx^c \]

- Poisson – brackets:
 \[\{E_f(S), A(e)\} = G A(e_1) f(S \cap e) A(e_2); \quad e = e_1 \circ e_2, \quad e_1 \cap e_2 = e \cap S \]

- Reality conditions:
 \[\overline{A(e)} = [A(e^{-1})]^T, \quad E_f(S) = E_f(S) \]

- Defines abstract Poisson*–algebra \(\mathcal{A} \)

- Bundle automorphisms \(\mathcal{G} \cong \mathcal{G} \times \text{Diff}(\sigma) \) act by Poisson automorphisms on \(\mathcal{A} \) e.g.
 \[\alpha_g = \exp(\{\int \lambda^j C_j, .\}), \quad g = \exp(\lambda^j \tau_j) \]
 \[\alpha_g(A(e)) = g(b(e)) A(e) g(f(e))^{-1}, \quad \alpha_\varphi(A(e)) = A(\varphi(e)) \]
Holonomy-Flux algebra [Rovelli & Smolin, Gambini & Pullin 80’s]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)
 \[A(e) = \mathcal{P} \exp(\int_e A) \]

- Electr. dof: flux
 \[E_f(S) = \int_S \epsilon_{abc} < E^a, f > \, dx^b \wedge dx^c \]

- Poisson – brackets:
 \[\{E_f(S), A(e)\} = G A(e_1) f(S \cap e) A(e_2); \quad e = e_1 \circ e_2, \quad e_1 \cap e_2 = e \cap S \]

- Reality conditions:
 \[\overline{A(e)} = [A(e^{-1})]^T, \quad E_f(S) = E_f(S) \]

- Defines abstract Poisson*-algebra \(\mathcal{A} \)

- Bundle automorphisms \(\mathcal{G} \cong \mathcal{G} \times \text{Diff}(\sigma) \) act by Poisson automorphisms on \(\mathcal{A} \) e.g. \(\alpha_g = \exp(\{ \int \lambda^j C_j, . \}) \), \(g = \exp(\lambda^j \tau_j) \)
 \[\alpha_g(A(e)) = g(b(e)) A(e)g(f(e))^{-1}, \quad \alpha_\varphi(A(e)) = A(\varphi(e)) \]
Holonomy-Flux algebra [Rovelli& Smolin, Gambini & Pullin 80’s]

- Magnet. dof.: Holonomy (Wilson-Loop; lattice gauge th. inspired)
 \[A(e) = \mathcal{P} \exp(\int_e A) \]

- Electr. dof: flux
 \[E_f(S) = \int_S \epsilon_{abc} < E^a, f > dx^b \wedge dx^c \]

- Poisson – brackets:
 \[\{E_f(S), A(e)\} = G A(e_1) f(S \cap e) A(e_2); \quad e = e_1 \circ e_2, \quad e_1 \cap e_2 = e \cap S \]

- Reality conditions:
 \[\overline{A(e)} = [A(e^{-1})]^T, \quad \overline{E_f(S)} = E_f(S) \]

- Defines abstract Poisson*–algebra \(\mathfrak{A} \)

- Bundle automorphisms \(\mathcal{G} \cong \mathcal{G} \times \text{Diff}(\sigma) \) act by Poisson automorphisms on \(\mathfrak{A} \) e.g.
 \[\alpha_g = \exp(\{\int \lambda^i C_j, .\}), \quad g = \exp(\lambda^i \tau_j) \]
 \[\alpha_g(A(e)) = g(b(e)) A(e) g(f(e))^{-1}, \quad \alpha_\varphi(A(e)) = A(\varphi(e)) \]
Quantum Theory

Representation Theory

- In QFT no Stone – von Neumann uniqueness Theorem!!!
- Idea: Use symmetry principles to select a representation (cf. Poincaré symmetry for QFT in Minkowski space)
- Here \mathcal{G} covariance of $H_{\text{can}}(L, S)$

$$\alpha_{g, \varphi}[H_{\text{can}}(L, S)] = H_{\text{can}}([\varphi^{-1}]^* L, [\varphi^{-1}]^* S)$$

- Cyclic representations are classified by analysing corresponding states (GNS theorem)

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra \mathfrak{A} unique.
Quantum Theory

Representation Theory

- In QFT no Stone – von Neumann uniqueness Theorem!!!
- Idea: Use symmetry principles to select a representation (cf. Poincaré symmetry for QFT in Minkowski space)

- Here \mathcal{G} covariance of $H_{\text{can}}(L,S)$

$$\alpha_{g,\varphi}[H_{\text{can}}(L,S)] = H_{\text{can}}([\varphi^{-1}]^*L, [\varphi^{-1}]^*S)$$

- Cyclic representations are classified by analysing corresponding states (GNS theorem)

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

$\text{Diff}(\sigma)$ inv. states on hol. – flux algebra \mathcal{A} unique.
Quantum Theory

Representation Theory

- In QFT no Stone – von Neumann uniqueness Theorem!!!
- Idea: Use symmetry principles to select a representation (cf. Poincaré symmetry for QFT in Minkowski space)
- Here \mathcal{G} covariance of $H_{\text{can}}(L, S)$

\[
\alpha_{g, \varphi}[H_{\text{can}}(L, S)] = H_{\text{can}}([\varphi^{-1}]^* L, [\varphi^{-1}]^* S)
\]

- Cyclic representations are classified by analysing corresponding states (GNS theorem)

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra \mathfrak{A} unique.
Quantum Theory

Representation Theory

- In QFT no Stone – von Neumann uniqueness Theorem!!!
- Idea: Use symmetry principles to select a representation (cf. Poincaré symmetry for QFT in Minkowski space)
- Here \mathcal{G} covariance of $H_{\text{can}}(L, S)$

$$\alpha_{g, \varphi}[H_{\text{can}}(L, S)] = H_{\text{can}}([\varphi^{-1}]^*L, [\varphi^{-1}]^*S)$$

- Cyclic representations are classified by analysing corresponding states (GNS theorem)

Theorem \([\text{Ashtekar, Isham, Lewandowski 92-93}, \text{ Sahlmann 02}, \text{ L., Okolow, S., T.T. 03-05}, \text{ Fleischhack 04}]\)

$\text{Diff}(\sigma)$ inv. states on hol. – flux algebra \mathfrak{A} unique.
Representation Theory

- In QFT no Stone – von Neumann uniqueness Theorem!!!
- Idea: Use symmetry principles to select a representation (cf. Poincaré symmetry for QFT in Minkowski space)
- Here \mathcal{G} covariance of $H_{\text{can}}(L, S)$

$$\alpha_{g, \varphi}[H_{\text{can}}(L, S)] = H_{\text{can}}([\varphi^{-1}]^* L, [\varphi^{-1}]^* S)$$

- Cyclic representations are classified by analysing corresponding states (GNS theorem)

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

$\text{Diff}(\sigma)$ inv. states on hol. – flux algebra \mathfrak{A} unique.
wave functions of $\mathcal{H}_{\text{phys}}$

$$\psi(A) = \psi_\gamma(A(e_1),..,A(e_N)), \quad \psi_\gamma : \text{SU}(2)^N \rightarrow \mathbb{C}$$

- Holonomy = multiplication – operator

$$[\hat{A}(e) \psi](A) := A(e) \psi(A)$$

- Flux = derivative – operator

$$[\hat{E}_j(S) \psi](A) := i\hbar \{E_j(S), \psi(A)\}$$

- Scalar product

$$<\psi,\psi'> := \int_{\text{SU}(2)^N} d\mu_H(h_1) .. d\mu_H(h_N) \bar{\psi}_\gamma(h_1,..,h_N) \psi'_{\gamma}(h_1,..,h_N)$$

- Diffeomorphisms act unitarily but not strongly continuously

$$U(\varphi)\psi_\gamma = \psi_{\varphi(\gamma)}$$
wave functions of $\mathcal{H}_{\text{phys}}$

$$\psi(A) = \psi_\gamma(A(e_1), \ldots, A(e_N)), \quad \psi_\gamma : \text{SU}(2)^N \rightarrow \mathbb{C}$$

Holonomy = multiplication – operator

$$[\hat{A(e)} \psi](A) := A(e) \psi(A)$$

Flux = derivative – operator

$$[\hat{E_j(S)} \psi](A) := i \hbar \{E_j(S), \psi(A)\}$$

Scalar product

$$<\psi, \psi'> := \int_{\text{SU}(2)^N} d\mu_H(h_1) \ldots d\mu_H(h_N) \psi_\gamma(h_1, \ldots, h_N) \overline{\psi_\gamma'(h_1, \ldots, h_N)}$$

Diffeomorphisms act unitarily but not strongly continuously

$$U(\varphi) \psi_\gamma = \psi_{\varphi(\gamma)}$$
wave functions of $\mathcal{H}_{\text{phys}}$

$$\psi(A) = \psi_{\gamma}(A(e_1),..,A(e_N)), \quad \psi_{\gamma} : \text{SU}(2)^N \to \mathbb{C}$$

Holonomy = multiplication – operator

$$[\hat{A}(e) \psi](A) := A(e) \psi(A)$$

Flux = derivative – operator

$$[\hat{E}_j(S) \psi](A) := i\hbar \{E_j(S), \psi(A)\}$$

Scalar product

$$\langle \psi, \psi' \rangle := \int_{\text{SU}(2)^N} d\mu_H(h_1) .. d\mu_H(h_N) \overline{\psi_{\gamma}(h_1,..,h_N)} \psi'_{\gamma}(h_1,..,h_N)$$

Diffeomorphisms act unitarily but not strongly continuously

$$U(\varphi) \psi_{\gamma} = \psi_{\varphi(\gamma)}$$
wave functions of $\mathcal{H}_{\text{phys}}$

$$\psi(A) = \psi_\gamma(A(e_1), .., A(e_N)), \quad \psi_\gamma : \text{SU}(2)^N \rightarrow \mathbb{C}$$

Holonomy = multiplication – operator

$$[\hat{A}(e) \psi](A) := A(e) \psi(A)$$

Flux = derivative – operator

$$[\hat{E}_j(S) \psi](A) := i\hbar \{E_j(S), \psi(A)\}$$

Scalar product

$$\langle \psi, \psi' \rangle := \int_{\text{SU}(2)^N} d\mu_H(h_1) .. d\mu_H(h_N) \overline{\psi_\gamma(h_1, .., h_N)} \psi'_\gamma(h_1, .., h_N)$$

Diffeomorphisms act unitarily but not strongly continuously

$$U(\varphi) \psi_\gamma = \psi_{\varphi(\gamma)}$$
wave functions of $\mathcal{H}_{\text{phys}}$

$$\psi(A) = \psi_\gamma(A(e_1),..,A(e_N)),$$ \(\psi_\gamma : \text{SU}(2)^N \rightarrow \mathbb{C}\)

Holonomy = multiplication – operator

$$[\hat{A}(e) \psi](A) := A(e) \psi(A)$$

Flux = derivative – operator

$$[\hat{E}_j(S) \psi](A) := i\hbar \{E_j(S), \psi(A)\}$$

Scalar product

$$\langle \psi, \psi' \rangle := \int_{\text{SU}(2)^N} d\mu_H(h_1) .. d\mu_H(h_N) \overline{\psi_\gamma(h_1,..,h_N)} \psi'_\gamma(h_1,..,h_N)$$

Diffeomorphisms act unitarily but not strongly continuously

$$U(\varphi)\psi_\gamma = \psi_{\varphi(\gamma)}$$
Spin Network Basis $T_{\gamma,j,l} \sim H_j$ Hermite Polynomials
Colour Coding of Spin Quantum Numbers
Simplex and Dual Graph
Dual Diamond: Coloured, simplicial cell complex (Triangulation)

Animation:
http://www.einstein-online.info/de/vertiefung/Spinnetzwerke/index.html.
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma =$ closed lin. span of SNWF over γ

 \[\Rightarrow \mathcal{H} = \bigoplus_\gamma \mathcal{H}_\gamma \]

- Not lattice gauge theory on fixed graph
- But lattice gauge theory on all graphs
- Continuum limit already taken
- Thm2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10's]
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma = \text{closed lin. span of SNWF over } \gamma$

 \[\Rightarrow \mathcal{H} = \bigoplus \mathcal{H}_\gamma \]

- **Not** lattice gauge theory on **fixed** graph
- But lattice gauge theory on **all** graphs
- Continuum limit already taken
- Thm2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10's]
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma = \text{closed lin. span of SNWF over } \gamma$

 $$\Rightarrow \mathcal{H} = \bigoplus_\gamma \mathcal{H}_\gamma$$

- Not lattice gauge theory on fixed graph
- But lattice gauge theory on all graphs

- Continuum limit already taken
- Thm2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10's]
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma = \text{closed lin. span of SNWF over } \gamma$

 $$\Rightarrow \mathcal{H} = \bigoplus_{\gamma} \mathcal{H}_\gamma$$

- Not lattice gauge theory on fixed graph
- But lattice gauge theory on all graphs
- Continuum limit already taken

- Thm2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10's]
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma = \text{closed lin. span of SNWF over } \gamma$
 \[
 \Rightarrow \mathcal{H} = \bigoplus_\gamma \mathcal{H}_\gamma
 \]
- Not lattice gauge theory on fixed graph
- But lattice gauge theory on all graphs
- Continuum limit already taken
- Thm 2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10’s]
Does this representation support the Hamiltonian?

- Thm: Let $\mathcal{H}_\gamma = \text{closed lin. span of SNWF over } \gamma$

 $$\Rightarrow \mathcal{H} = \bigoplus_\gamma \mathcal{H}_\gamma$$

- Not lattice gauge theory on fixed graph
- But lattice gauge theory on all graphs
- Continuum limit already taken
- Thm2: H_{can} densely defined on \mathcal{H}
- Currently no restriction on (super, conformal) matter and dimension

[Bodendorfer, Ma, Stottmeister, TT, Thurn 10’s]
Comparison with YM theory on cubic lattice

- Yang – Mills on \((R^4, \eta)\) [Kogut & Susskind 74]

\[
H_{YM,\gamma} = \frac{\hbar}{2 g^2} \epsilon \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(E(S_{e''})^2 + [2 - A(\alpha_{vee'}) - A(\alpha^a_{vee'})^{-1}] \right)
\]

- Gravity on \(\mathbb{R} \times \sigma\) [T.T. 90’s]

\[
H_{\text{can},\gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha^a_{vee'}) A(e'') [A(e'')^{-1}, V_v] \right)
\]

- Volume operator

\[
V_v = \sqrt{\left| \sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr} (E(S_e) E(S_{e'}) E(S_{e''})) \right|}
\]

- Lattice spacing \(\epsilon\) disappears, automat. UV finite.

- In a precise sense: \(\epsilon\) replaced by \(\ell_P\)

- Constraint algebra (weakly) non anomalous, however: Regularisation leaves ambiguities (choice of \(\alpha_{v,e,e'}\)).
Comparison with YM theory on cubic lattice

- **Yang – Mills on** \((R^4, \eta) \) [Kogut & Susskind 74]

\[
H_{\text{YM},\gamma} = \frac{\hbar}{2 g^2} \epsilon \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(E(S_{e''})^2 + [2 - A(\alpha_{vee'}) - A(\alpha_{vee'}^{-1})] \right)
\]

- **Gravity on** \(\mathbb{R} \times \sigma \) [T.T. 90’s]

\[
H_{\text{can},\gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha_{vee'}) A(e'') [A(e'')^{-1}, V_v] \right)
\]

- **Volume operator**

\[
V_v = \sqrt{\left| \sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr} (E(S_e) E(S_{e'}) E(S_{e''})) \right|}
\]

- Lattice spacing \(\epsilon \) disappears, automat. UV finite.
- In a precise sense: \(\epsilon \) replaced by \(\ell_P \)
- Constraint algebra (weakly) non anomalous, however: Regularisation leaves ambiguities (choice of \(\alpha_{v,e,e'} \)).
Comparison with YM theory on cubic lattice

- Yang – Mills on \((\mathbb{R}^4, \eta)\) [Kogut & Susskind 74]

\[
H_{\text{YM}, \gamma} = \frac{\hbar}{2 g^2} \epsilon \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(E(S_{e''})^2 + [2 - A(\alpha_{\text{vee'}}) - A(\alpha_{\text{vee'}})^{-1}] \right)
\]

- Gravity on \(\mathbb{R} \times \sigma\) [T.T. 90’s]

\[
H_{\text{can}, \gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha_{\text{vee'}}) A(e'') [A(e'')^{-1}, V_v] \right)
\]

- Volume operator

\[
V_v = \sqrt{\left| \sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr} \left(E(S_e) E(S_{e'}) E(S_{e''}) \right) \right|}
\]

- Lattice spacing \(\epsilon\) disappears, automat. UV finite.
- In a precise sense: \(\epsilon\) replaced by \(\ell_P\)
- Constraint algebra (weakly) non anomalous, however:
 Regularisation leaves ambiguities (choice of \(\alpha_{V,v,e,e'}\)).
Comparison with YM theory on cubic lattice

- Yang – Mills on \((R^4, \eta)\) [Kogut & Susskind 74]

\[
H_{YM,\gamma} = \frac{\hbar}{2 g^2 \epsilon} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left((E(S_{e''})^2 + [2 - A(\alpha_{vee'}) - A(\alpha_{vee'})^{-1}]) \right)
\]

- Gravity on \(R \times \sigma\) [T.T. 90’s]

\[
H_{\text{can},\gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha_{vee'}) A(e'') [A(e'')^{-1}, V_v] \right)
\]

- Volume operator

\[
V_v = \sqrt{|\sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr}(E(S_e) E(S_{e'}) E(S_{e''}))|}
\]

- Lattice spacing \(\epsilon\) disappears, automat. UV finite.

- In a precise sense: \(\epsilon\) replaced by \(\ell_P\)

- Constraint algebra (weakly) non anomalous, however: Regularisation leaves ambiguities (choice of \(\alpha_{v,e,e'}\)).
Comparison with YM theory on cubic lattice

- Yang – Mills on \((\mathbb{R}^4, \eta)\) [Kogut & Susskind 74]
 \[
 H_{YM,\gamma} = \frac{\hbar}{2 g^2} \epsilon \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(E(S_{e''})^2 + [2 - A(\alpha_{\text{vee}}) - A(\alpha_{\text{vee}}^{-1})] \right)
 \]

- Gravity on \(\mathbb{R} \times \sigma\) [T.T. 90's]
 \[
 H_{\text{can},\gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha_{\text{vee}}^a) A(e'') [A(e'')^{-1}, V_v] \right)
 \]

- Volume operator
 \[
 V_v = \sqrt{\left| \sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr} (E(S_e) E(S_{e'}) E(S_{e''})) \right|}
 \]

- Lattice spacing \(\epsilon\) disappears, automat. UV finite.
- In a precise sense: \(\epsilon\) replaced by \(\ell_P\)
- Constraint algebra (weakly) non anomalous, however: Regularisation leaves ambiguities (choice of \(\alpha_{\nu,e,e'}\)).
Comparison with YM theory on cubic lattice

- Yang – Mills on \((R^4, \eta)\) [Kogut & Susskind 74]

\[
H_{YM,\gamma} = \frac{\hbar}{2 g^2} \epsilon \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left((E(S_{e''})^2 + [2 - A(\alpha_{vee'}) - A(\alpha_{v e e'}^{-1})] \right)
\]

- Gravity on \(\mathbb{R} \times \sigma\) [T.T. 90's]

\[
H_{\text{can},\gamma} = \frac{\hbar}{\ell_P^4} \sum_{v \in V(\gamma)} \sum_{e \cap e' \cap e'' = v} \text{Tr} \left(A(\alpha_{v e e'}^a) A(e'') [A(e'')^{-1}, V_v] \right)
\]

- Volume operator

\[
V_v = \sqrt{\left| \sum_{e \cap e' \cap e'' = v} \sigma(e, e', e'') \text{Tr} (E(S_e) E(S_{e'}) E(S_{e''})) \right|}
\]

- Lattice spacing \(\epsilon\) disappears, automat. UV finite.

- In a precise sense: \(\epsilon\) replaced by \(\ell_P\)

- Constraint algebra (weakly) non anomalous, however: Regularisation leaves ambiguities (choice of \(\alpha_{v, e, e'}\)).
Overview: LQG research has 3 main directions:

- **Quantum Dynamics**
 - Canonical:
 - Improved Constraint Algebra, Consistent Discretisations [Gambini & Pullin 00’s], Master Constraint Programme, Deparametrisation, Semiclassical Limit.
 - Covariant:
 - Spin Foam Models, Group Field Theory, Renormalisation.

- **Quantum Black Holes**

- **Quantum Cosmology**
Overview: LQG research has 3 main directions:

- **Quantum Dynamics**
 - Canonical:
 - Improved Constraint Algebra, Consistent Discretisations [Gambini & Pullin 00’s], Master Constraint Programme, Deparametrisation, Semiclassical Limit.
 - Covariant:
 - Spin Foam Models, Group Field Theory, Renormalisation.

- **Quantum Black Holes**

- **Quantum Cosmology**
Overview: LQG research has 3 main directions:

- **Quantum Dynamics**
 - Canonical:
 - Improved Constraint Algebra, Consistent Discretisations [Gambini & Pullin 00’s], Master Constraint Programme, Deparametrisation, Semiclassical Limit.
 - Covariant:
 - Spin Foam Models, Group Field Theory, Renormalisation.

- **Quantum Black Holes**

- **Quantum Cosmology**
Overview: LQG research has 3 main directions:

- **Quantum Dynamics**
 - Canonical:
 - Improved Constraint Algebra, Consistent Discretisations [Gambini & Pullin 00’s], Master Constraint Programme, Deparametrisation, Semiclassical Limit.
 - Covariant:
 - Spin Foam Models, Group Field Theory, Renormalisation.

- **Quantum Black Holes**

- **Quantum Cosmology**
Overview: LQG research has 3 main directions:

- **Quantum Dynamics**
 - **Canonical:**
 - Improved Constraint Algebra, Consistent Discretisations [Gambini & Pullin 00's], Master Constraint Programme, Deparametrisation, Semiclassical Limit.
 - **Covariant:**
 - Spin Foam Models, Group Field Theory, Renormalisation.

- **Quantum Black Holes**

- **Quantum Cosmology**
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

- Classically

\[
\{H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)\} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L \, dL' - L' \, dL])
\]

- Question: If \(U(\varphi)\Psi = \Psi \), is it true that

\[
\langle \Psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\psi \rangle = 0
\]

- Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

- Problem: \(H_{\text{can}}(0, S) \nexists \) on \(\mathcal{H} \).

- Idea: Extend \(\mathcal{H} \) to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which \(H_{\text{can}}(0, S) \) exists.

- Already promising results for the \(U(1)^3 \) model (\(G \rightarrow 0 \) limit)
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

- Classically

\[
\{H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)\} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L \, dL' - L' \, dL])
\]

- Question: If \(U(\phi)\psi = \psi\), is it true that

\[
<\psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\psi> = 0
\]

- Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

- Problem: \(H_{\text{can}}(0, S) \not\exists \) on \(\mathcal{H}\).

- Idea: Extend \(\mathcal{H}\) to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which \(H_{\text{can}}(0, S)\) exists.

- Already promising results for the \(U(1)^3\) model (\(G \rightarrow 0\) limit)
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

- Classically

\[
\{H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)\} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L \, dL' - L' \, dL])
\]

- Question: If \(U(\varphi)\psi = \psi\), is it true that

\[
<\psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\psi > = 0
\]

- Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

- Problem: \(H_{\text{can}}(0, S) \not\exists\) on \(\mathcal{H}\).

- Idea: Extend \(\mathcal{H}\) to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which \(H_{\text{can}}(0, S)\) exists.

- Already promising results for the \(U(1)^3\) model (\(G \rightarrow 0\) limit)
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

- Classically

\[
\{H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)\} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L \, dL' - L' \, dL])
\]

- Question: If \(U(\phi)\Psi = \Psi\), is it true that

\[
<\Psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\Psi > = 0
\]

- Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

- Problem: \(H_{\text{can}}(0, S) \not\in \mathcal{H}\).

- Idea: Extend \(\mathcal{H}\) to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which \(H_{\text{can}}(0, S)\) exists.

- Already promising results for the \(U(1)^3\) model (\(G \to 0\) limit)
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

Classically

$$\{ H_{\text{can}}(L, 0), H_{\text{can}}(L', 0) \} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L \, dL' - L' \, dL])$$

Question: If $U(\phi)\psi = \psi$, is it true that

$$<\psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\psi >= 0$$

Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

Problem: $H_{\text{can}}(0, S) \not\exists$ on \mathcal{H}.

Idea: Extend \mathcal{H} to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which $H_{\text{can}}(0, S)$ exists.

Already promising results for the $U(1)^3$ model ($G \rightarrow 0$ limit)
Improved Constraint Algebra [Henderson, Laddha, Tomlin, Varadarajan 10’s]

Classically

\[
\{H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)\} = -H_{\text{can}}(0, \frac{E}{|\det(E)|^{1/2}} \cdot [L\, dL' - L'\, dL])
\]

Question: If \(U(\varphi)\psi = \psi\), is it true that

\[
<\psi, [H_{\text{can}}(L, 0), H_{\text{can}}(L', 0)]\psi >= 0
\]

Answer: yes, but can we close algebra off shell and thereby fix q’ion ambiguities?

Problem: \(H_{\text{can}}(0, S) \not\exists \) on \(\mathcal{H}\).

Idea: Extend \(\mathcal{H}\) to certain distributions [Gambini, Marolf, Lewandowski, Pullin 90’s] on which \(H_{\text{can}}(0, S)\) exists.

Already promising results for the U(1)\(^3\) model (G \(\rightarrow\) 0 limit)
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions \(\Psi \) of \(H_{\text{can}} \Psi = 0 \)
 - Determine new HS structure \(\mathcal{H}_{\text{phys}} \) on distributions \(\Psi \)
 - Represent observables \([H_{\text{can}}(L, S), O] = 0 \) as s.a. op. on \(\mathcal{H}_{\text{phys}} \)

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian \(H_{\text{true}} \) driving their dynamics, LQG HS is \(\mathcal{H}_{\text{phys}} \) (constraints absent)

- Correct semiclassical limit of \(H_{\text{true}} \) confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of \(H_{\text{true}} \) fixable using techniques developed for \(H_{\text{can}} \)
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions Ψ of $H_{\text{can}}\Psi = 0$
 - Determine new HS structure $\mathcal{H}_{\text{phys}}$ on distributions Ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on $\mathcal{H}_{\text{phys}}$

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is $\mathcal{H}_{\text{phys}}$ (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions Ψ of $H_{\text{can}} \Psi = 0$
 - Determine new HS structure $\mathcal{H}_{\text{phys}}$ on distributions Ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on $\mathcal{H}_{\text{phys}}$

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is $\mathcal{H}_{\text{phys}}$ (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions Ψ of $H_{\text{can}} \Psi = 0$
 - Determine new HS structure $\mathcal{H}_{\text{phys}}$ on distributions Ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on $\mathcal{H}_{\text{phys}}$

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is $\mathcal{H}_{\text{phys}}$ (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions ψ of $H_{\text{can}}\psi = 0$
 - Determine new HS structure $\mathcal{H}_{\text{phys}}$ on distributions ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on $\mathcal{H}_{\text{phys}}$

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is $\mathcal{H}_{\text{phys}}$ (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions ψ of $H_{\text{can}} \psi = 0$
 - Determine new HS structure H_{phys} on distributions ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on H_{phys}

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is H_{phys} (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions ψ of $H_{\text{can}} \psi = 0$
 - Determine new HS structure $\mathcal{H}_{\text{phys}}$ on distributions ψ
 - Represent observables $[H_{\text{can}}(L, S), O] = 0$ as s.a. op. on $\mathcal{H}_{\text{phys}}$

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_{true} driving their dynamics, LQG HS is $\mathcal{H}_{\text{phys}}$ (constraints absent)

- Correct semiclassical limit of H_{true} confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_{true} fixable using techniques developed for H_{can}.
Deparametrisation [Domagala, Giesel, Husain, Kaminski, Lewandowski, Pawlowski, TT 00’s]

- Even if q’ion ambiguities fixed, still left with huge task:
 - Find all solutions Ψ of $H_\text{can} \Psi = 0$
 - Determine new HS structure \mathcal{H}_phys on distributions Ψ
 - Represent observables $[H_\text{can}(L, S), O] = 0$ as s.a. op. on \mathcal{H}_phys

- Technically very hard! [Alesci, Liegner, Zipfel 13]

- Idea: Use material reference systems to perform this task classically
 [Brown, Kuchař, Romano, Torre 90’s], [Rovelli 90’s, Dittrich 00’s]

- Result: All present LQG techniques can be imported, direct access to observables, true Hamiltonian H_true driving their dynamics, LQG HS is \mathcal{H}_phys (constraints absent)

- Correct semiclassical limit of H_true confirmed [Giesel, TT] using coherent state techniques [Sahlmann, TT, Winkler 00’s].

- Q’ion ambiguities of H_true fixable using techniques developed for H_can
Spin Foam Models (SFM) and Group Field Theories (GFT)

- SFM must define a rigging map, heuristically [Reisenberger, Rovelli 90’s]

\[
\eta[\psi] := \langle \psi, \delta[H_{\text{can}}] \rangle := \int d\mu(L, S) \langle \psi, \exp(iH_{\text{can}}(S, L)) \rangle.
\]

- Usual Feynman Path Integral heuristics suggests

\[
\eta[\psi] := \int d\mu(e, \omega) \langle \psi, \exp(iS_{\text{Palatini}}(e, \omega)) \rangle.
\]

- Use Plebanski’s reformulation as constrained B-F Theory (topological!)
 [Baez, Barrett, Crane, Freidel, Krasnov 90’s]

\[
\eta[\psi] := \int d\mu(A, B, \lambda) \langle \psi, \exp(iS_{\text{Plebanski}}(B, F, \lambda)) \rangle,
\]

\[
S = \int_M \text{Tr}(B \wedge F + \lambda \cdot P \cdot B \wedge B)
\]

- Integrate out \(\lambda\) and introduce funct. derivatives

\[
\eta[\psi] := \int d\mu(A, B) \delta[P \cdot \frac{\delta^2}{\delta F^2}] \langle \psi, \exp(iS(B, F)) \rangle.
\]
Spin Foam Models (SFM) and Group Field Theories (GFT)

- SFM must define a rigging map, heuristically [Reisenberger, Rovelli 90’s]

 \[\eta[\psi] := <\psi, \delta[H_{\text{can}}]> := \int d\mu(L, S) \ <\psi, \exp(iH_{\text{can}}(S, L))>. \]

- Usual Feynman Path Integral heuristics suggests

 \[\eta[\psi] := \int d\mu(e, \omega) \ <\psi, \exp(iS_{\text{Palatini}}(e, \omega))>. \]

- Use Plebanski’s reformulation as constrained B-F Theory (topological!)
 [Baez, Barrett, Crane, Freidel, Krasnov 90’s]

 \[\eta[\psi] := \int d\mu(A, B, \lambda) \ <\psi, \exp(iS_{\text{Plebanski}}(B, F, \lambda))>. \]

 \[S = \int_M \text{Tr}(B \wedge F + \lambda \cdot P \cdot B \wedge B) \]

- Integrate out \(\lambda\) and introduce funct. derivatives

 \[\eta[\psi] := \int d\mu(A, B) \ \delta[P \cdot \frac{\delta^2}{\delta F^2}] \cdot <\psi, \exp(iS(B, F))>. \]
Spin Foam Models (SFM) and Group Field Theories (GFT)

- SFM must define a rigging map, heuristically [Reisenberger, Rovelli 90’s]

\[\eta[\psi] := <\psi, \delta[H_{\text{can}}] > := \int d\mu(L, S) <\psi, \exp(iH_{\text{can}}(S, L)) > \]

- Usual Feynman Path Integral heuristics suggests

\[\eta[\psi] := \int d\mu(e, \omega) <\psi, \exp(iS_{\text{Palatini}}(e, \omega)) > \]

- Use Plebanski’s reformulation as constrained B-F Theory (topological!)
 [Baez, Barrett, Crane, Freidel, Krasnov 90’s]

\[\eta[\psi] := \int d\mu(A, B, \lambda) <\psi, \exp(iS_{\text{Plebanski}}(B, F, \lambda)) >, \]

\[S = \int_M \text{Tr}(B \wedge F + \lambda \cdot P \cdot B \wedge B) \]

- Integrate out \(\lambda \) and introduce funct. derivatives

\[\eta[\psi] := \int d\mu(A, B) \delta[P \cdot \frac{\delta^2}{\delta F^2}] <\psi, \exp(iS(B, F)) >, \]
Spin Foam Models (SFM) and Group Field Theories (GFT)

- SFM must define a rigging map, heuristically [Reisenberger, Rovelli 90’s]
 \[\eta[\psi] := \langle \psi, \delta[H_{\text{can}}] \rangle > := \int d\mu(L, S) \langle \psi, \exp(iH_{\text{can}}(S, L)) \rangle > \]

- Usual Feynman Path Integral heuristics suggests
 \[\eta[\psi] := \int d\mu(e, \omega) \langle \psi, \exp(iS_{\text{Palatini}}(e, \omega)) \rangle > \]

- Use Plebanski’s reformulation as constrained B-F Theory (topological!)
 [Baez, Barrett, Crane, Freidel, Krasnov 90’s]
 \[\eta[\psi] := \int d\mu(A, B, \lambda) \langle \psi, \exp(iS_{\text{Plebanski}}(B, F, \lambda)) \rangle >, \]
 \[S = \int_M \text{Tr}(B \wedge F + \lambda \cdot P \cdot B \wedge B) \]

- Integrate out \(\lambda \) and introduce funct. derivatives
 \[\eta[\psi] := \int d\mu(A, B) \delta[P \cdot \frac{\delta^2}{\delta F^2}] \cdot \langle \psi, \exp(iS(B, F)) \rangle >, \]
Integrate out B

$$\eta[\psi] := \int d\mu(A) \delta[P \cdot \frac{\delta^2}{\delta F^2}] \cdot <\psi, \delta[F] >$$

- Discretise M by 2-complex κ, assume $d\mu = d\mu_H$ and replace $F(f) \rightarrow A(\partial f) - 1, \delta/\delta F(f) \rightarrow R(A(\partial f))$

- Use harmonic analysis on $SO(1,3)$ to write η in terms of sums (integrals) over irreps (spins) and intertwiners and sum over κ
Integrate out B

$$\eta[\psi] := \int d\mu(A) \delta[P \cdot \frac{\delta^2}{\delta F^2}] \cdot \langle \psi, \delta[F] \rangle$$

Discretise M by 2-complex κ, assume $d\mu = d\mu_H$ and replace $F(f) \rightarrow A(\partial f) - 1$, $\delta/\delta F(f) \rightarrow R(A(\partial f))$

Use harmonic analysis on SO(1,3) to write η in terms of sums (integrals) over irreps (spins) and intertwiners and sum over κ.
Integrate out B

$$
\eta[\psi] := \int d\mu(A) \delta[P \cdot \frac{\delta^2}{\delta F^2}] \cdot \langle \psi, \delta[F] \rangle
$$

Discretise M by 2-complex κ, assume $d\mu = d\mu_H$ and replace $F(f) \rightarrow A(\partial f) - 1$, $\delta/\delta F(f) \rightarrow R(A(\partial f))$

Use harmonic analysis on $SO(1,3)$ to write η in terms of sums (integrals) over irreps (spins) and intertwiners and sum over κ
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00's] SFM

$$S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right]$$

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10's]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00's]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10's]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00's]

- 3 well studied models (differ in implementation of simplicity constraints):
 - Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10's]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]

- Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Many promising results:

- **Sum over κ controllable by GFT formulation (Feynman graph expansion)** [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

\[
S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) [\phi(g)^2 + V(\phi(g))]
\]

- **Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms** [Bahr, Dittrich 10’s]

- **Graviton propagator** [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- **Semiclassical limit (large spin) related to Regge Calculus** [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- **Finiteness results for spin sums (integrals)** [Baez, Barrett, Perez, Rovelli 00’s]

- **3 well studied models (differ in implementation of simplicity constraints):**
 [Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)]

- **Recently contact between canonical and covariant theory by projected spin network states** [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- **SFM f. quantum groups and cosmological const.** [Han; Fairbairn, Meusburger 10]

- **Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM**
Many promising results:

- **Sum over** κ **controllable by GFT formulation (Feynman graph expansion)** [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

\[
S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right]
\]

- **Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms** [Bahr, Dittrich 10’s]

- **Graviton propagator** [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- **Semiclassical limit** (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- **Finiteness results for spin sums** (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- **3 well studied models** (differ in implementation of simplicity constraints): [Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)]

- **Recently contact between canonical and covariant theory by projected spin network states** [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- **SFM f. quantum groups and cosmological const.** [Han; Fairbairn, Meusburger 10]

- **Cosmology** [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

$$S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) [\phi(g)^2 + V(\phi(g))]$$

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10’s]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- 3 well studied models (differ in implementation of simplicity constraints): Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]

- Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Many promising results:

- **Sum over κ controllable by GFT formulation (Feynman graph expansion)** [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00's] SFM
 \[S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right] \]

- **Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms** [Bahr, Dittrich 10’s]

- **Graviton propagator** [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- **Semiclassical limit (large spin) related to Regge Calculus** [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- **Finiteness results for spin sums (integrals)** [Baez, Barrett, Perez, Rovelli 00’s]

- **3 well studied models (differ in implementation of simplicity constraints):**
 - Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)

- **Recently contact between canonical and covariant theory by projected spin network states** [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesiowski, Lewandowski 10’s]

- **SFM f. quantum groups and cosmological const.** [Han; Fairbairn, Meusburger 10]

- **Cosmology** [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM.
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

\[
S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right]
\]

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10’s]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- 3 well studied models (differ in implementation of simplicity constraints):
 - Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]

- Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00's] SFM

$$S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right]$$

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10’s]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- 3 well studied models (differ in implementation of simplicity constraints):
 - Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]

- Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

$$ S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right] $$

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10’s]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- 3 well studied models (differ in implementation of simplicity constraints):
 [Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)]

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]
Many promising results:

- Sum over κ controllable by GFT formulation (Feynman graph expansion) [Baratin, Bonzom, Freidel, Gurau, Krajewski, Oriti, Rivasseau, ...00’s] SFM

\[
S_{\text{GFT}}[\phi] = \int_{G^n} d\mu_H(g) \left[\phi(g)^2 + V(\phi(g)) \right]
\]

- Appropriate framework for studying renormalisation and perfect discretisations of spacetime diffeomorphisms [Bahr, Dittrich 10’s]

- Graviton propagator [Alesci, Bianchi, Magliaro, Perini, Rovelli, Speziale 00’s]

- Semiclassical limit (large spin) related to Regge Calculus [Bahr, Barrett, Conrady, Dittrich, Freidel, Hellmann, Speziale 10’s]

- Finiteness results for spin sums (integrals) [Baez, Barrett, Perez, Rovelli 00’s]

- 3 well studied models (differ in implementation of simplicity constraints): [Barrett-Crane (BC), Engle-Pereira-Rovelli-Livine (EPRL), Freidel-Krasnov (KL)]

- Recently contact between canonical and covariant theory by projected spin network states [Dupuis, Livine] and SFM for non simplicial complexes [Kaminski, Kiesilowski, Lewandowski 10’s]

- SFM f. quantum groups and cosmological const. [Han; Fairbairn, Meusburger 10]

- Cosmology [Viadotto, Rovelli] and BH entropy [Bianchi, Rovelli] from SFM
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

\[S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} \]

What is the microscopic origin of this entropy?
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

\[S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_p^2} \]

What is the microscopic origin of this entropy?
It from Bit? ['t Hooft, Susskind, Wheeler]
Quantum Black Holes

- Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

\[S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} \]

- What is the microscopic origin of this entropy?
- Idea: Count number \(N \) of eigenstates of operator \(\text{Ar}(H \cap \sigma) \), define \(S \equiv \ln(N) \) [Krasnov, Rovelli 90’s]
- Semiclassical quantum boundary conditions make sure that:
 - not any surface but isolated horizon (equilibrium)
 - \(\text{Ar}(H \cap \sigma) \) is gauge invariant (observable)
 - \(S \) correctly accounted for by bdry CS dof
- Upon fixing a free parameter to a universal (matter independent) value [Ashtekar, Baez, Corichi, Krasnov 00’s]

\[S = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} + O(\ln(A/l_P^2)) \]
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

$$S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_p^2}$$

What is the microscopic origin of this entropy?

Idea: Count number N of eigenstates of operator $\text{Ar}(H \cap \sigma)$, define $S := \ln(N)$ [Krasnov, Rovelli 90's]

Semiclassical quantum boundary conditions make sure that

- not any surface but isolated horizon (equilibrium)
 - $\text{Ar}(H \cap \sigma)$ is gauge invariant (observable)
 - S correctly accounted for by bdry CS dof

Upon fixing a free parameter to a universal (matter independent) value [Ashtekar, Baez, Corichi, Krasnov 00's]

$$S = \frac{\text{Ar}(H \cap \sigma)}{4L_p^2} + O(\ln(A/l_p^2))$$
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

$$S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_p^2}$$

What is the microscopic origin of this entropy?

Idea: Count number N of eigenstates of operator $\text{Ar}(H \cap \sigma)$, define

$$S := \ln(N) \quad [\text{Krasnov, Rovelli 90's}]$$

Semiclassical quantum boundary conditions make sure that

- not any surface but isolated horizon (equilibrium)
- $\text{Ar}(H \cap \sigma)$ is gauge invariant (observable)

S correctly accounted for by bdry CS dof

Upon fixing a free parameter to a universal (matter independent) value

$$S = \frac{\text{Ar}(H \cap \sigma)}{4L_p^2} + O(\ln(A/l_p^2))$$

[Ashtekar, Baez, Corichi, Krasnov 00's]
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

\[S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} \]

What is the microscopic origin of this entropy?

Idea: Count number \(N \) of eigenstates of operator \(\text{Ar}(H \cap \sigma) \), define

\[S := \ln(N) \] [Krasnov, Rovelli 90’s]

Semiclassical quantum boundary conditions make sure that

- not any surface but isolated horizon (equilibrium)
- \(\text{Ar}(H \cap \sigma) \) is gauge invariant (observable)
- \(S \) correctly accounted for by bdry CS dof

Upon fixing a free parameter to a universal (matter independent) value

[Ashtekar, Baez, Corichi, Krasnov 00’s]

\[S = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} + O(\ln(A/l_P^2)) \]
Hawking’s Area Theorem (classical GR) and Hawking’s radiation (QFT in classical ST) strongly suggest that BH have an entropy

\[S_{BH} = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} \]

What is the microscopic origin of this entropy?

Idea: Count number \(N \) of eigenstates of operator \(\text{Ar}(H \cap \sigma) \), define
\[S := \ln(N) \quad \text{[Krasnov, Rovelli 90's]} \]

Semiclassical quantum boundary conditions make sure that
- not any surface but isolated horizon (equilibrium)
- \(\text{Ar}(H \cap \sigma) \) is gauge invariant (observable)
- \(S \) correctly accounted for by bdry CS dof

Upon fixing a free parameter to a universal (matter independent) value
\[S = \frac{\text{Ar}(H \cap \sigma)}{4L_P^2} + O(\ln(A/l_P^2)) \]

[Ashtekar, Baez, Corichi, Krasnov 00's]
Warning: All spins contribute, no bit picture!
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, ...]
- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, ...]
- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]
- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]
- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, ...]
- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00’s]
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, ...]
- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, ...]
- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]
- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]
- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, ...]
- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00's]
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, ...]

- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, ..]

- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]

- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]

- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, ...]

- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00's]
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, …]
- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, …]
- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]
- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]
- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, …]
- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00’s]
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, ...]
- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, ...]
- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]
- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]
- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, ...]
- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00's]
Many generalisations:

- **Improved Counting methods** [Barbero, Agullo, Borja, Diaz-Polo, Sahlmann, Villasenor, ...]
- **Generalisation of the boundary conditions** [Ashtekar, Beetle, Bianchi, Engle, Gosh, Kaul, Majumdar, Mitra, Noui, Perez, Pranzetti, ...]
- **Dynamical horizons and multipole expansions** [Ashtekar, Campiglia, Engle, Pawlowski, Van den Broeck]
- **Entanglement interpretation of entropy and independence of free parameter** [Bianchi, Frodden, Ghosh, Perez, Pranzetti]
- **LQC quantisation of spherically symm. BH and singularity resolution** [Alesci, Ashtekar, Bojowald, Modesto, ...]
- **LQG quantisation of spherically symm. BH and singularity resolution** [Gambini & Pullin 00’s]
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]
 - E.g. in FRW model \((A^j_a(x), E^a_j(x)) \rightarrow (a, e)\)
 - Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG
 - Power of LQC: Everything can be worked out explicitly, perfect test laboratory

 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]

- E.g. in FRW model \((A^i_a(x), E^a_j(x)) \rightarrow (a, e)\)

- Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG

- Power of LQC: Everything can be worked out explicitly, perfect test laboratory

 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]

- E.g. in FRW model \((A^j_a(x), E^a_j(x)) \rightarrow (a, e)\)

- Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG

- Power of LQC: Everything can be worked out explicitly, perfect test laboratory

 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- **Idea:** Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90’s]

- **E.g.** in FRW model \((A^j_a(x), E^a_j(x)) \to (a, e)\)

- **Hope:** if BKL scenario correct, LQC could give suitable approximation of full LQG

- **Power of LQC:** Everything can be worked out explicitly, perfect test laboratory

 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]
- E.g. in FRW model \((A^i_a(x), E^a_j(x)) \rightarrow (a, e)\)
- Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG
- Power of LQC: Everything can be worked out explicitly, perfect test laboratory

 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]
- E.g. in FRW model \((A^j_a(x), E^a_j(x)) \rightarrow (a, e)\)
- Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG
- Power of LQC: Everything can be worked out explicitly, perfect test laboratory

- Singularity resolution in all Bianchi models
- Pre-big-bang: QG solution of the horizon problem in cosmology
- Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Quantum Cosmology

- Idea: Explore the homogeneous sector of LQG by q’ising the minisuperspace of cosmology by LQG methods [Bojowald 90's]
- E.g. in FRW model \((A^j_a(x), E^a_j(x)) \rightarrow (a, e)\)
- Hope: if BKL scenario correct, LQC could give suitable approximation of full LQG
- Power of LQC: Everything can be worked out explicitly, perfect test laboratory
 - Singularity resolution in all Bianchi models
 - Pre-big-bang: QG solution of the horizon problem in cosmology
 - Fast damping of QG fluctuations away from “would be” singularity, numerical and analytical results
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
- Deparametrisation put into practice
- In particular: precise s.a. extensions of H_{true}
- Contact with inflation and observation (PLANCK data)!!!
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
- Deparametrisation put into practice
- In particular: precise s.a. extensions of H_{true}
- Contact with inflation and observation (PLANCK data)!!!
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
 - Deparametrisation put into practice
 - In particular: precise s.a. extensions of H_{true}
 - Contact with inflation and observation (PLANCK data)!!!
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
- Deparametrisation put into practice
 - In particular: precise s.a. extensions of H_{true}
 - Contact with inflation and observation (PLANCK data)!!!
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
- Deparametrisation put into practice
- In particular: precise s.a. extensions of H_{true}
- Contact with inflation and observation (PLANCK data)!!!
Spectacular success (continued):

- Hybrid quantisation in Gowdy models: homogeneous modes (LQC) + inhomogeneous (Fock)
- Fixing of quantisation ambiguities
- LQC spin foam model
- Deparametrisation put into practice
- In particular: precise s.a. extensions of H_{true}
- Contact with inflation and observation (PLANCK data)!!!
Selected Open Research Problems

- Provide exact match between SFM and canonical LQG
- Fully derive LQC from LQG [Alesci, Cianfrani]
- Hawking effect from first principles
- Emergence of QFT in CST from LQG [Ashtekar, Lewandowski 10’s; Sahlmann, TT 00’s]
- Contact with perturbation theory and effective theories
Selected Open Research Problems

- Provide exact match between SFM and canonical LQG
- Fully derive LQC from LQG [Alesci, Cianfrani]
- Hawking effect from first principles
- Emergence of QFT in CST from LQG [Ashtekar, Lewandowski 10’s; Sahlmann, TT 00’s]
- Contact with perturbation theory and effective theories
Selected Open Research Problems

- Provide exact match between SFM and canonical LQG
- Fully derive LQC from LQG [Alesci, Cianfrani]
- Hawking effect from first principles
- Emergence of QFT in CST from LQG [Ashtekar, Lewandowski 10’s; Sahlmann, TT 00’s]
- Contact with perturbation theory and effective theories
Selected Open Research Problems

- Provide exact match between SFM and canonical LQG
- Fully derive LQC from LQG [Alesci, Cianfrani]
- Hawking effect from first principles
- Emergence of QFT in CST from LQG [Ashtekar, Lewandowski 10’s; Sahlmann, TT 00’s]
- Contact with perturbation theory and effective theories
Selected Open Research Problems

- Provide exact match between SFM and canonical LQG
- Fully derive LQC from LQG [Alesci, Cianfrani]
- Hawking effect from first principles
- Emergence of QFT in CST from LQG [Ashtekar, Lewandowski 10’s; Sahlmann, TT 00’s]
- Contact with perturbation theory and effective theories
Thank you for your attention!